2017 Emergency Medicine Airway Course - BASICS

Andrew Perron, MD, FACEP
Department of Emergency Medicine
Maine Medical Center

Course Outline

- Who / why / when / etc
- Airway assessment
 - How to predict trouble
 - Ohow to stay out of trouble
- Rapid sequence intubation
 - Orugs / physiology / etc

ED Airway Management

Logistics:

- Dying patients
 - Need to do something fast
 - Physiology already marginal
- Little time
 - Frequently no time to optimize physiology
- Little information
 - ? Full stomach / ? Tank empty
- Little margin for error
- Can't cancel the case

ED Airway Management

What you will need:

- Rapid assessment skills
- Preparation
- Technical proficiency
- Communication
- Calm under pressure
- The ability to anticipate trouble

Stepwise Assessment Goals

#1: Is intubation required?

- Failure to protect the airway
- Head injury with a GCS ≤8
- Inadequate oxygenation
- Inadequate ventilation
- Anticipated course

Associated question: Is it required right now, in 3 minutes, or sometime in the next 30 minutes

#2: Will it be difficult?

- Difficult bag-mask ventilation?
- Difficult laryngoscopy?
- Difficult cricothyroidotomy?

#3: Best technique?

- RSI the standard
- Other options do exist:
 - Awake or sedative-assisted intubation
 - Blind nasotracheal intubations
 - Alternative technique as the 1° approach
 - Surgical airway as the 1° approach
 - Double set-up

#4: Will physiology suffer?

- Hypoxemia
- Aspiration
- Airway injury
- Hypo/hypertension
- Tachy/bradycardia

Drug-related:

- Hyperkalemia
- Myoclonus
- Rigid chest
- Adrenal insufficiency

Ask yourself... does your patient have:

- A risk of aspiration?
- Altered airway anatomy?
- Cardiovascular instability?
- Shock (obvious or occult)?
- Intracranial hypertension?
- Cervical spine injury?

#5: Best Rescue Technique?

- Essential to contemplate <u>before</u> beginning the process
 - Watch the third years
 - Never start an airway without a back-up plan
 - Here we have everything / most places don't.
- Mastery of 2-3 of these will get you out of almost every jam

Can We <u>Predict</u> The Difficult Airway?

- Long upper incisors and/or prominent overbite
- Interincisor distance <3 finger breaths</p>
- Mandibular floor distance <3 finger breaths
- Thyromental distance <2 finger breaths
- Mallampati score >2
- Highly arched palate
- Large, thick tongue
- Short, thick neck
- Inability to touch chin to chest/extend head

ASA Taskforce. *Anesthesiology* 2003; 98:1269-1277.

Mallampati

	N	Sensitivity	Specificity
Mallampati Score	41,193	49%	86%
Thyromental Distance	29,132	20%	94%
Sternomental Distance	1,085	62%	82%
Mouth Opening	20,614	22%	97%

- •Meta-analysis of 35 studies assessing airway difficulty [n=50,760]
- •5.8% incidence of difficult airway

Shiga T. *Anesthesiology* 2005; 103:429-437.

Difficult mask ventilation "MOANS"

Difficult laryngoscopy "LEMON"

Difficult cricothyrotomy "SHORT"

Difficult bag-valve-mask?

- Mask seal
- Obesity [BMI >26 kg/m³]
- Aged [Age >55]
- No teeth
- Stiff [Asthma, COPD, ARDS]

Difficult laryngoscopy?

- Look externally
- Examine (3-3-2)
- Mallampati
- Obstruction
- Neck Mobility

Difficult Airway Assessment

Difficult surgical airway?

- Surgery
- Hematoma
- Obese
- Radiation
- Tumor

Look At The Airway

Look At The Airway

Examine The Airway ["3-_-"]

Examine The Airway ["_-3-_"]

Examine The Airway ["_--2"]

Examine The Airway ["3-3-2"]

Examine The Airway

Examine The Airway

Mallampati

Mallampati

Mallampatti II

Mallampatti IV

Obstruction

- Tongue
- Blood
- Vomitus
- Edema
- Foreign body
- Tumor

Neck Mobility

Testing The LEMON Law

Comparison of a 10-point LEMON Score to the Cormack Score for grading visualization of the glottis in 156 ED patients.

Cormack 1	"Easy Intubation"	114 [73%]
Cormack ≥2	"Difficult Intubation"	42 [27%]

Reed JM. *Emerg Med Journal* 2005; 22:102-107.

Testing The LEMON Law

Look Injury, big teeth, large tongue, beard

Examine "3-3-2" bedside measurement

Mallampati Score ≥3

Obstruction Any condition causing obstruction

Neck Mobility Limited neck mobility

Reed JM. *Emerg Med Journal* 2005; 22:102-107.

Testing The LEMON Law

Criteria most highly associated with difficult intubation:

- Large incisors
- Inter-incisor distance <3 fingerbreadths
- Thyromental distance <2 fingerbreadths

"Big teeth, small mouth, short neck..."

Difficult Airway Assessment

Difficult surgical airway?

- Surgery
- Hematoma
- Obese
- Radiation
- Tumor

Will Physiology Suffer?

What should you worry about...?

#1	Head injury with a blown pupil	
#2	Asthmatic in severe distress	
#3	Stab wound to the chest	
#4	NERH stroke patient with pneumonia	
#5	Acute smoke inhalation	
#6	Agitated aspirin overdose	

How Can We Anticipate Trouble? Does the patient Does the patient have any *physiologic* have any *airway* concerns? concerns? Formulate A Primary & Rescue Plan

Logistics

- Everyone on the team has a job
- All drugs drawn up & sequenced
- Agreed upon back-up plan

Within One Arm's Length:

End tidal CO₂ detector, oral airway, 2 smaller endotracheal tubes, Bougie, equipment for your rescue plan...

RSI involves the <u>rapid</u> and <u>simultaneous</u> administration of a short-acting sedative and a neuromuscular blocking agent to facilitate intubation and decrease the risk of aspiration.

Goals:

- Immediate muscle relaxation
- Decreased risk of aspiration
- Sedation and amnesia
- Attenuation of physiologic reflexes

The 9 P's of RSI:

- **Preparation**
- Preoxygenation
- **Pretreatment**
- Paralysis and sedation
- Protection with Positioning
- Placement with Proof
- Post-intubation management

Preparation:

- Equipment
- The patient
- The operator (that means you!)
- A back-up plan

90% of airway disasters are due to inadequate preparation!

Preoxygenation:

- Goal: 3-7 minutes of apnea protection
- Nitrogen 'reservoir' replaced by oxygen
- May be difficult to achieve in patients with acute or chronic lung pathology
- Avoid bagging unless the patient is hypoxemic [SaO₂ < 90%]

TIME TO HEMOGLOBIN DESATURATION WITH INITIAL $F_AO_2 = 0.87$

Benumof JL. Anesthesiology 1997; 87:979-82.

Good:

In the healthy, well pre-oxygenated adult...

...you have 6-8 minutes

Not so good:

- Children
- The obese
- Limited reserve
- Sepsis
- Pregnancy

Benumof JL. *Anesthesiology* 1997; 87:979.

Anesthesia study [n=56] comparing:

- 3 Minutes of spontaneous breathing 100% FIO₂
- 3 Vital capacity breaths
- 8 Vital capacity breaths

Baraka AS. *Anesthesiology* 1999; 91:612.

Time to desaturation <95%:

8 Vital Capacity Breaths	5.21 min
3 Minutes Of Spontaneous Breathing	3.73 min
4 Vital Capacity Breaths	2.78 min

Baraka AS. *Anesthesiology* 1999; 91:612.

Don't Forget The Basics!

- Clear the airway
- Good mask seal
- Chin lift, jaw thrust
- Oral / nasal airway

Paralysis and sedation:

- Goal optimal intubating conditions 1st try
- Synergy between agents is important

"The patient is already obtunded... should I skip the induction agent?"

Succinylcholine

- Remains the drug of choice for the ED
- 1.5 mg/kg (don't skimp)
- Adequate paralysis in 45 seconds
- Clinical duration 6-8 minutes
- The dark side:
 - Fatal hyperkalemic risk
 - Bradycardia & asystole [children, 2nd dose]

Fatal Hyperkalemic Risk

Up-Regulation

- Burns, crush
- UMN [eg: stroke]
- LMN [eg: SC injury]

Myopathy

- Muscular dystrophy
- Rare idiopathic

Mortality 11%

Mortality 30%

Gronert GA. Anesthesiology 2001; 94:523.

Use In Renal Failure

- Most common ED contraindication
- When given to patients with known renal failure, succinylcholine increases the serum potassium 0.5-1.0 mEq/L
- Dysthymias are very uncommon

Schow AJ. Anesthesia Analog 2002; 95:119.

Thapa S. *Anesthesia Analog* 2000; 91:237.

Rocuronium

- Ideal non-depolarizer for the ED
- Kinetics:
 - Onset at 60 seconds
 - Duration of action 45 minutes

Recommended dose: 1.2 mg/kg

Rocuronium Or Succinylcholine?

Analysis of 37 studies [n=2690] comparing intubating condition. Two conclusions:

#1: → Succinylcholine superior overall

No difference when rocuronium given at the highest dose [1.2 mg/kg]

Perry JJ. Cochrane Database of Systematic Reviews 2009.

RSI Paralytic Agents

Is The Patient At Risk For An Important Succinylcholine-Related Complication?

Which Induction Drug Is Best?

RSI Sedative Essentials

Midazolam

[0.2-0.3 mg/kg]

- Good amnestic
- Better drugs for the head
- Hypotension underappreciated

Thiopental

[3-5 µg/kg]

- Strong cerebroprotection
- -Hypotension a big risk

RSI Sedative Essentials

Propofol

[0.5-1.2 mg/kg]

- Similar to thiopental
- Hypotension a major risk
- No apparent advantage in RSI

Ketamine

[1-2 mg/kg IV] [2-4 mgkg IM]

- Bronchodilator
- Cardiac stimulation
- •ICP controversy (historical)

Ketamine In Head Injury

- Several authors have questioned the historical dogma
- Ketamine is potentially advantageous in hypotensive head injury patient
- No data in the ED RSI population

Himmelseher S. *Anesthesia Analog* 2005; 101:524.

Sehdev RS. *Emerg Med Australia* 2006; 18:37.

RSI Sedative Essentials

Etomidate

[0.15-0.3 mg/kg]

- The "ideal" ED sedative
- Excellent cerebro-protection
- Hemodynamics rarely altered
- Transient cortisol suppression
- Supply issue currently

Etomidate And Adrenal Function

- Transient adrenal suppression
 - 4-12 hours
- Some studies say this is important, some do not.
- Maybe more important in sepsis patients?

THM: No patient-oriented outcomes have argued Against etomidate. If they are hypotensive, however, That is a good time to use Ketamine

Translation Into Practice

Competing Concerns

Use Etomidate

- Septic patients get hypotensive
- Hypotension is bad
- Etomidate works best in shock

Don't Use Etomidate

- Septic patients need cortisol
- Etomidate stuns the adrenals
- Adrenal insufficiency is bad

Ketamine is a great alternative, although no prospective data

Proctection and Positioning:

- Cricoid pressure taught for decades
- Recent data questions the notion that cricoid pressure prevents aspiration
- Cricoid pressure may worsen our view
- Which maneuver[s] are important?

Which Maneuvers Is Best?

Cadaver study comparing visualization of the glottis using:

- No pressure
- Cricoid pressure
- **BURP**
- Bimanual laryngoscopy

1,530 Comparative Sets

Levitan RM. *Ann Emerg Med* 2006; 47:548.

Which Maneuvers Is Best?

Results:

- No pressure worst overall
- Bimanual laryngoscopy best overall
- Cricoid pressure most likely to worsen glottic visualization
- BURP usually helps, but can hurt

Levitan RM. *Ann Emerg Med* 2006; 47:548.

GET THE HEAD OFF THE BED!!

Best Head Postion

 456 patients underwent laryngoscopy in <u>both</u> the sniffing position and with simple head extension

 Glottic exposure graded with the Cormack scale

Adent F. Anesthesiology 2001; 95:836

Best Head Postion

In the majority of intubations head position did not impact the glottic view

 In <u>obese</u> patients and in those with <u>limited neck mobility</u>, the <u>sniffing</u> <u>position</u> significantly improved glottic visualization

Adent F. Anesthesiology 2001; 95:836

Placement and Proof:

- A direct view of tube passing through the cords remains the best method of assuring proper placement
- All other surrogate methods have pitfalls
- Objective confirmation the standard in the field, in the ED, and in the OR

Misplaced ETT?

Citation	N	Misplaced
Katz SH	108	25%
Annals 2001		
Jemmet M	109	12%
<i>AEM</i> 2003		
Jones JH	208	5.8%
<i>AEM</i> 2004		

Things not covered

- 5 Drug inductions / pretreatment
- Passive apneic oxygenation
- Ramp position
- Post intubation care
 - Sedation & analgesia
 - Positioning

Take Home Essentials

- **#1:** Airway is the most important / complicated part of the job. You need to be *GREAT* at it.
- **#2:** Know how to anticipate / minimize trouble
- **#3:** Know your drug / device choices
- #4: "Be good, fast, and smooth"